Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation.

Identifieur interne : 003441 ( Main/Exploration ); précédent : 003440; suivant : 003442

Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation.

Auteurs : Zhi-Bin Luo [République populaire de Chine] ; Dennis Janz ; Xiangning Jiang ; Cornelia Göbel ; Henning Wildhagen ; Yupeng Tan ; Heinz Rennenberg ; Ivo Feussner ; Andrea Polle

Source :

RBID : pubmed:19812185

Descripteurs français

English descriptors

Abstract

Ectomycorrhizas (EMs) alleviate stress tolerance of host plants, but the underlying molecular mechanisms are unknown. To elucidate the basis of EM-induced physiological changes and their involvement in stress adaptation, we investigated metabolic and transcriptional profiles in EM and non-EM roots of gray poplar (Populus x canescens) in the presence and absence of osmotic stress imposed by excess salinity. Colonization with the ectomycorrhizal fungus Paxillus involutus increased root cell volumes, a response associated with carbohydrate accumulation. The stress-related hormones abscisic acid and salicylic acid were increased, whereas jasmonic acid and auxin were decreased in EM compared with non-EM roots. Auxin-responsive reporter plants showed that auxin decreased in the vascular system. The phytohormone changes in EMs are in contrast to those in arbuscular mycorrhizas, suggesting that EMs and arbuscular mycorrhizas recruit different signaling pathways to influence plant stress responses. Transcriptome analyses on a whole genome poplar microarray revealed activation of genes related to abiotic and biotic stress responses as well as of genes involved in vesicle trafficking and suppression of auxin-related pathways. Comparative transcriptome analysis indicated EM-related genes whose transcript abundances were independent of salt stress and a set of salt stress-related genes that were common to EM non-salt-stressed and non-EM salt-stressed plants. Salt-exposed EM roots showed stronger accumulation of myoinositol, abscisic acid, and salicylic acid and higher K(+)-to-Na(+) ratio than stressed non-EM roots. In conclusion, EMs activated stress-related genes and signaling pathways, apparently leading to priming of pathways conferring abiotic stress tolerance.

DOI: 10.1104/pp.109.143735
PubMed: 19812185
PubMed Central: PMC2785981


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation.</title>
<author>
<name sortKey="Luo, Zhi Bin" sort="Luo, Zhi Bin" uniqKey="Luo Z" first="Zhi-Bin" last="Luo">Zhi-Bin Luo</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100</wicri:regionArea>
<wicri:noRegion>Shaanxi 712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Janz, Dennis" sort="Janz, Dennis" uniqKey="Janz D" first="Dennis" last="Janz">Dennis Janz</name>
</author>
<author>
<name sortKey="Jiang, Xiangning" sort="Jiang, Xiangning" uniqKey="Jiang X" first="Xiangning" last="Jiang">Xiangning Jiang</name>
</author>
<author>
<name sortKey="Gobel, Cornelia" sort="Gobel, Cornelia" uniqKey="Gobel C" first="Cornelia" last="Göbel">Cornelia Göbel</name>
</author>
<author>
<name sortKey="Wildhagen, Henning" sort="Wildhagen, Henning" uniqKey="Wildhagen H" first="Henning" last="Wildhagen">Henning Wildhagen</name>
</author>
<author>
<name sortKey="Tan, Yupeng" sort="Tan, Yupeng" uniqKey="Tan Y" first="Yupeng" last="Tan">Yupeng Tan</name>
</author>
<author>
<name sortKey="Rennenberg, Heinz" sort="Rennenberg, Heinz" uniqKey="Rennenberg H" first="Heinz" last="Rennenberg">Heinz Rennenberg</name>
</author>
<author>
<name sortKey="Feussner, Ivo" sort="Feussner, Ivo" uniqKey="Feussner I" first="Ivo" last="Feussner">Ivo Feussner</name>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19812185</idno>
<idno type="pmid">19812185</idno>
<idno type="doi">10.1104/pp.109.143735</idno>
<idno type="pmc">PMC2785981</idno>
<idno type="wicri:Area/Main/Corpus">003431</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003431</idno>
<idno type="wicri:Area/Main/Curation">003431</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003431</idno>
<idno type="wicri:Area/Main/Exploration">003431</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation.</title>
<author>
<name sortKey="Luo, Zhi Bin" sort="Luo, Zhi Bin" uniqKey="Luo Z" first="Zhi-Bin" last="Luo">Zhi-Bin Luo</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100</wicri:regionArea>
<wicri:noRegion>Shaanxi 712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Janz, Dennis" sort="Janz, Dennis" uniqKey="Janz D" first="Dennis" last="Janz">Dennis Janz</name>
</author>
<author>
<name sortKey="Jiang, Xiangning" sort="Jiang, Xiangning" uniqKey="Jiang X" first="Xiangning" last="Jiang">Xiangning Jiang</name>
</author>
<author>
<name sortKey="Gobel, Cornelia" sort="Gobel, Cornelia" uniqKey="Gobel C" first="Cornelia" last="Göbel">Cornelia Göbel</name>
</author>
<author>
<name sortKey="Wildhagen, Henning" sort="Wildhagen, Henning" uniqKey="Wildhagen H" first="Henning" last="Wildhagen">Henning Wildhagen</name>
</author>
<author>
<name sortKey="Tan, Yupeng" sort="Tan, Yupeng" uniqKey="Tan Y" first="Yupeng" last="Tan">Yupeng Tan</name>
</author>
<author>
<name sortKey="Rennenberg, Heinz" sort="Rennenberg, Heinz" uniqKey="Rennenberg H" first="Heinz" last="Rennenberg">Heinz Rennenberg</name>
</author>
<author>
<name sortKey="Feussner, Ivo" sort="Feussner, Ivo" uniqKey="Feussner I" first="Ivo" last="Feussner">Ivo Feussner</name>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abscisic Acid (metabolism)</term>
<term>Adaptation, Physiological (drug effects)</term>
<term>Adaptation, Physiological (genetics)</term>
<term>Basidiomycota (physiology)</term>
<term>Carbohydrate Metabolism (drug effects)</term>
<term>Carbohydrate Metabolism (genetics)</term>
<term>Cell Size (drug effects)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Genes, Plant (MeSH)</term>
<term>Metabolome (drug effects)</term>
<term>Metabolome (genetics)</term>
<term>Mycorrhizae (drug effects)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (physiology)</term>
<term>Plant Roots (drug effects)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Roots (physiology)</term>
<term>Populus (drug effects)</term>
<term>Populus (genetics)</term>
<term>Populus (microbiology)</term>
<term>Populus (physiology)</term>
<term>Salicylic Acid (metabolism)</term>
<term>Salinity (MeSH)</term>
<term>Signal Transduction (drug effects)</term>
<term>Signal Transduction (genetics)</term>
<term>Sodium Chloride (pharmacology)</term>
<term>Solubility (drug effects)</term>
<term>Stress, Physiological (drug effects)</term>
<term>Stress, Physiological (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide abscissique (métabolisme)</term>
<term>Acide salicylique (métabolisme)</term>
<term>Adaptation physiologique (effets des médicaments et des substances chimiques)</term>
<term>Adaptation physiologique (génétique)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Basidiomycota (physiologie)</term>
<term>Chlorure de sodium (pharmacologie)</term>
<term>Gènes de plante (MeSH)</term>
<term>Mycorhizes (effets des médicaments et des substances chimiques)</term>
<term>Mycorhizes (génétique)</term>
<term>Mycorhizes (physiologie)</term>
<term>Métabolisme glucidique (effets des médicaments et des substances chimiques)</term>
<term>Métabolisme glucidique (génétique)</term>
<term>Métabolome (effets des médicaments et des substances chimiques)</term>
<term>Métabolome (génétique)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (génétique)</term>
<term>Populus (microbiologie)</term>
<term>Populus (physiologie)</term>
<term>Racines de plante (effets des médicaments et des substances chimiques)</term>
<term>Racines de plante (génétique)</term>
<term>Racines de plante (microbiologie)</term>
<term>Racines de plante (physiologie)</term>
<term>Régulation de l'expression des gènes végétaux (effets des médicaments et des substances chimiques)</term>
<term>Salinité (MeSH)</term>
<term>Solubilité (effets des médicaments et des substances chimiques)</term>
<term>Stress physiologique (effets des médicaments et des substances chimiques)</term>
<term>Stress physiologique (génétique)</term>
<term>Taille de la cellule (effets des médicaments et des substances chimiques)</term>
<term>Transduction du signal (effets des médicaments et des substances chimiques)</term>
<term>Transduction du signal (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Abscisic Acid</term>
<term>Salicylic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Carbohydrate Metabolism</term>
<term>Cell Size</term>
<term>Gene Expression Regulation, Plant</term>
<term>Metabolome</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Populus</term>
<term>Signal Transduction</term>
<term>Solubility</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Mycorhizes</term>
<term>Métabolisme glucidique</term>
<term>Métabolome</term>
<term>Populus</term>
<term>Racines de plante</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Solubilité</term>
<term>Stress physiologique</term>
<term>Taille de la cellule</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Carbohydrate Metabolism</term>
<term>Metabolome</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Populus</term>
<term>Signal Transduction</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Mycorhizes</term>
<term>Métabolisme glucidique</term>
<term>Métabolome</term>
<term>Populus</term>
<term>Racines de plante</term>
<term>Stress physiologique</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide abscissique</term>
<term>Acide salicylique</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Chlorure de sodium</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sodium Chloride</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Basidiomycota</term>
<term>Mycorhizes</term>
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basidiomycota</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Genes, Plant</term>
<term>Salinity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Gènes de plante</term>
<term>Salinité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ectomycorrhizas (EMs) alleviate stress tolerance of host plants, but the underlying molecular mechanisms are unknown. To elucidate the basis of EM-induced physiological changes and their involvement in stress adaptation, we investigated metabolic and transcriptional profiles in EM and non-EM roots of gray poplar (Populus x canescens) in the presence and absence of osmotic stress imposed by excess salinity. Colonization with the ectomycorrhizal fungus Paxillus involutus increased root cell volumes, a response associated with carbohydrate accumulation. The stress-related hormones abscisic acid and salicylic acid were increased, whereas jasmonic acid and auxin were decreased in EM compared with non-EM roots. Auxin-responsive reporter plants showed that auxin decreased in the vascular system. The phytohormone changes in EMs are in contrast to those in arbuscular mycorrhizas, suggesting that EMs and arbuscular mycorrhizas recruit different signaling pathways to influence plant stress responses. Transcriptome analyses on a whole genome poplar microarray revealed activation of genes related to abiotic and biotic stress responses as well as of genes involved in vesicle trafficking and suppression of auxin-related pathways. Comparative transcriptome analysis indicated EM-related genes whose transcript abundances were independent of salt stress and a set of salt stress-related genes that were common to EM non-salt-stressed and non-EM salt-stressed plants. Salt-exposed EM roots showed stronger accumulation of myoinositol, abscisic acid, and salicylic acid and higher K(+)-to-Na(+) ratio than stressed non-EM roots. In conclusion, EMs activated stress-related genes and signaling pathways, apparently leading to priming of pathways conferring abiotic stress tolerance.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19812185</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>02</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>151</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2009</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation.</ArticleTitle>
<Pagination>
<MedlinePgn>1902-17</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.109.143735</ELocationID>
<Abstract>
<AbstractText>Ectomycorrhizas (EMs) alleviate stress tolerance of host plants, but the underlying molecular mechanisms are unknown. To elucidate the basis of EM-induced physiological changes and their involvement in stress adaptation, we investigated metabolic and transcriptional profiles in EM and non-EM roots of gray poplar (Populus x canescens) in the presence and absence of osmotic stress imposed by excess salinity. Colonization with the ectomycorrhizal fungus Paxillus involutus increased root cell volumes, a response associated with carbohydrate accumulation. The stress-related hormones abscisic acid and salicylic acid were increased, whereas jasmonic acid and auxin were decreased in EM compared with non-EM roots. Auxin-responsive reporter plants showed that auxin decreased in the vascular system. The phytohormone changes in EMs are in contrast to those in arbuscular mycorrhizas, suggesting that EMs and arbuscular mycorrhizas recruit different signaling pathways to influence plant stress responses. Transcriptome analyses on a whole genome poplar microarray revealed activation of genes related to abiotic and biotic stress responses as well as of genes involved in vesicle trafficking and suppression of auxin-related pathways. Comparative transcriptome analysis indicated EM-related genes whose transcript abundances were independent of salt stress and a set of salt stress-related genes that were common to EM non-salt-stressed and non-EM salt-stressed plants. Salt-exposed EM roots showed stronger accumulation of myoinositol, abscisic acid, and salicylic acid and higher K(+)-to-Na(+) ratio than stressed non-EM roots. In conclusion, EMs activated stress-related genes and signaling pathways, apparently leading to priming of pathways conferring abiotic stress tolerance.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Luo</LastName>
<ForeName>Zhi-Bin</ForeName>
<Initials>ZB</Initials>
<AffiliationInfo>
<Affiliation>College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Janz</LastName>
<ForeName>Dennis</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Xiangning</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Göbel</LastName>
<ForeName>Cornelia</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wildhagen</LastName>
<ForeName>Henning</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tan</LastName>
<ForeName>Yupeng</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rennenberg</LastName>
<ForeName>Heinz</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Feussner</LastName>
<ForeName>Ivo</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Polle</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>10</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>451W47IQ8X</RegistryNumber>
<NameOfSubstance UI="D012965">Sodium Chloride</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>72S9A8J5GW</RegistryNumber>
<NameOfSubstance UI="D000040">Abscisic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>O414PZ4LPZ</RegistryNumber>
<NameOfSubstance UI="D020156">Salicylic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000040" MajorTopicYN="N">Abscisic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050260" MajorTopicYN="N">Carbohydrate Metabolism</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048429" MajorTopicYN="N">Cell Size</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055442" MajorTopicYN="N">Metabolome</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020156" MajorTopicYN="N">Salicylic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054712" MajorTopicYN="N">Salinity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012965" MajorTopicYN="N">Sodium Chloride</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012995" MajorTopicYN="N">Solubility</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>10</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>10</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>2</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19812185</ArticleId>
<ArticleId IdType="pii">pp.109.143735</ArticleId>
<ArticleId IdType="doi">10.1104/pp.109.143735</ArticleId>
<ArticleId IdType="pmc">PMC2785981</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Tree Physiol. 2005 Oct;25(10):1273-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16076776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2006 Sep;26(9):1185-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16740494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 May;53(372):1351-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:651-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Jan;68(1):101-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17097695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2009 Feb;51(2):167-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19200155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Jul;99(3):996-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Sep;19(5):579-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10504579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Mar;37(6):914-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14996223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Oct;10(5):466-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17904410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Feb;17(2):202-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14964534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Dec;44(5):810-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16297072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Apr;22(4):469-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19271961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 May;135(1):400-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Mar;57(5):895-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19000161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2006;6:25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17038189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 May;19(5):1665-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17513501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2009 Apr;229(5):1023-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19169704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Jul 10;580(16):3980-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16806195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Jul;30(7):796-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17547652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2008 Sep;28(9):1305-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18595842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2006 Jan;7(1):32-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16493411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Growth Regul. 2000 Jun;19(2):144-154</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Jun;123(2):487-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10859179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jul;138(3):1195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16009995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2008 May;49(5):1137-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18281723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 May 22;324(5930):1064-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19407143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(5):1097-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18272925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Jun;182(4):950-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19383096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2008 Jan;10(1):2-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18211544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Apr;10(2):204-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17291823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2002 Apr 17;288(1-2):129-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12034502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2000 Oct;38(2):411-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11069666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Apr;38(1):119-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15053765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Feb;140(2):761-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16384909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13386-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16174735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Aug;11(4):436-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18614393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jan;19(1):281-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17259265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1996 Apr;9(4):537-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8624516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Aug;167(2):579-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Jan;116(1):357-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9449848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Jan 25;267(3):1502-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1730697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Feb;29(4):417-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Sep;31(9):1203-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18507809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Dec;168(3):697-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16313651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2005 Nov;162(11):1210-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16323272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Jun;11(6):263-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16697245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jul;135(3):1697-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:781-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2006 Nov;2(11):e123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17096590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1995 Mar;15(3):191-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14965975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2005 Apr;16(4):1673-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15659647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:53-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2006 Jun;47(6):788-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16621846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2002 Aug;12(4):185-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12189473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Jan;71(1):382-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15640212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2008 Sep 15;22(18):2564-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18794352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Jun;12(6):267-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17499007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Oct 9;553(1-2):3-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14550537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1992 Apr;11(3):137-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24213546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Jul;30(7):875-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17547658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Sep;139(1):267-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16113213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Aug;8(4):409-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15939661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(3):554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17635230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;174(1):137-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17335504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(8):1947-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17452754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Aug;10(4):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17658291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1996 Oct;21(10):383-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8918192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002;14 Suppl:S165-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Aug;10(4):425-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17644024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;170(2):391-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16608463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Aug;6(4):365-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12873532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 Jan;225(2):331-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17016715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008;8:19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18298811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jun;144(2):976-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17449645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 May 1;30(9):e36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11972351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 May;50(3):529-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17419842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 Jan-Feb;6(1):91-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15095139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Apr;50(2):347-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17376166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2002 Dec;12(6):303-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12466918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Mar 6;452(7183):88-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18322534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2007 Mar;17(2):121-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17115201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11309499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Jul;18(7):659-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16042012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Dec;139(4):1762-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16299175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Feb;165(2):599-611</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2005;6(12):R101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16356264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2007 Dec;13(6):843-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18061566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biostatistics. 2003 Apr;4(2):249-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12925520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2006 Mar;16(2):117-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16322986</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Feussner, Ivo" sort="Feussner, Ivo" uniqKey="Feussner I" first="Ivo" last="Feussner">Ivo Feussner</name>
<name sortKey="Gobel, Cornelia" sort="Gobel, Cornelia" uniqKey="Gobel C" first="Cornelia" last="Göbel">Cornelia Göbel</name>
<name sortKey="Janz, Dennis" sort="Janz, Dennis" uniqKey="Janz D" first="Dennis" last="Janz">Dennis Janz</name>
<name sortKey="Jiang, Xiangning" sort="Jiang, Xiangning" uniqKey="Jiang X" first="Xiangning" last="Jiang">Xiangning Jiang</name>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
<name sortKey="Rennenberg, Heinz" sort="Rennenberg, Heinz" uniqKey="Rennenberg H" first="Heinz" last="Rennenberg">Heinz Rennenberg</name>
<name sortKey="Tan, Yupeng" sort="Tan, Yupeng" uniqKey="Tan Y" first="Yupeng" last="Tan">Yupeng Tan</name>
<name sortKey="Wildhagen, Henning" sort="Wildhagen, Henning" uniqKey="Wildhagen H" first="Henning" last="Wildhagen">Henning Wildhagen</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Luo, Zhi Bin" sort="Luo, Zhi Bin" uniqKey="Luo Z" first="Zhi-Bin" last="Luo">Zhi-Bin Luo</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003441 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003441 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19812185
   |texte=   Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19812185" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020